Federation of relational databases and data lakes

With Virtual Knowledge Graphs

Benjamin Cogrel, CTO and co-founder

Data-Centric Architecture Forum, Fort Collins, June 7, 2022

About me

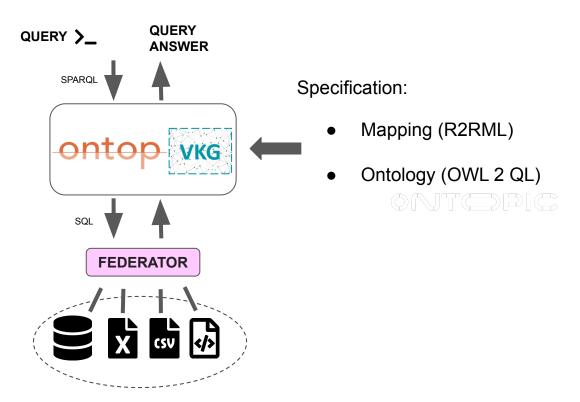
- Former researcher at the Free University of Bozen-Bolzano (Italy)
 on Virtual Knowledge Graphs (aka Ontology-Based Data Access)
- Now CTO and co-founder of Ontopic (spin-off)
- Core developer of Ontop, an open-source VKG engine (now included in GraphDB and Allegrograph)

Agenda

- Database federators
- Virtual Knowledge Graphs
- Performance

Database federators

- Also called data virtualization platforms, data lake engines or data lakehouses
- Dremio, Apache Spark and Teiid (open-source), Denodo (commercial)
- SQL query processors
 - Hide dialects/No-SQL query languages and file formats
 - Plan, execute distributed joins
 - Can materialize parts of the data (on-demand)


Dealing with files from data lakes

- Made accessible as relational views
 - Directories of files with the same structure can be merged into a single view
- Nested data
 - JSON arrays, multivalued fields (common in CSV)
 - Can be flattened into new views

This data becomes queryable using plain SQL over the flattened views

Virtual Knowledge Graphs (OBDA)

Virtual Knowledge Graphs (OBDA)

- SPARQL queries are translated into SQL
- Relying on a mapping (typically R2RML or a dialect variant)
- Combined with database federators, can integrate multiple heterogeneous data sources
- VKG engines
 - Ontop (standalone or embedded in GraphDB or Allegrograph)
 - Stardog (virtual graph component)

Performance

- 1. Optimization at the VKG engine level
- 2. Acceleration at the database federator level

Optimization at the VKG level

Intensive use of structural information for generating efficient SQL queries

- Incompatible IRI templates helps pruning unions
 - "No point joining these 2 tables together"
- Information about the source structures
 - Integrity constraints (e.g. unique constraints, foreign keys)
 - Nullability information
 - Minimizes the number of inner and left joins coming from the SPARQL query

Acceleration at the database federator level

- Trade-off between materialization and federation
- Dremio
 - Different forms of materialization
 - Materialization of an existing view
 - Data-cube-like for accelerating aggregate queries
 - Often no need to change the SQL queries
 - No view creation
 - Keep the same mapping
 - Relies of the query planner of Dremio

Remarks on SPARQL federation

- Far less structural information than SQL federation
 - Much less optimization opportunities
 - Things could go better with SHACL
- I am not aware of acceleration capabilities comparable to those offered by Dremio

Thank you!

Ontop: https://ontop-vkg.org
Dremio: https://dremio.com

Ontopic: https://ontopic.ai

Reach me at benjamin.cogrel@ontopic.ai

