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About me
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● CTO and co-founder of Ontopic

● Core developer of the Virtual Knowledge Graph engine Ontop since 2014

● Research on VKG for 5 years at the Free University of Bozen-Bolzano
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Ontopic started in 2019 as a spin-off of the 
Free University of Bozen-Bolzano (Italy), from 
the research group that authored Ontop, an 
open-source Virtual Knowledge Graph engine
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Our flagship product & services

Support and training for 
Ontopic Studio
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Projects and consulting 
on data integration

Extending and adapting 
Ontop



Agenda
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1. What is key for virtual KGs

2. Mapping design

3. Some feedback from industry



A Virtual-first take on KG 
construction
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● Central component of KG construction: mapping

● 2 ways to use a mapping

a. To extract and transform data in RDF (KG materialization)

■ Always possible

b. To reformulate SPARQL queries into source queries (KG virtualization)

■ Requires care and metadata
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SQL

Specification:

● Ontology
● Mapping

● Dremio
● Denodo
● Apache Spark
● Trino / Athena

Supported federators:

Query >_ Query Answer

FEDERATOR

Virtual Knowledge Graph

SPARQL

KG virtualization with Ontop



What makes the virtual approach to KG 
attractive
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●  No requirement to move data from the "sources"

○  Immediate testing

○  Lightweight reasoning at almost no cost

●   Flexible notion of "sources"

○ Not necessarily the primary sources (e.g.  operational databases)

○ Can be a data warehouse / lakehouses / in-memory DBs (large diversity)

○ Allows for materialization to speed up queries (just not done at the RDF level)

●  Enables hybrid KG solutions 

○ One part in a triplestore, one part kept virtual



Common reasons for choosing the 
virtual approach
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●   You don't want to move data

○ Too large and frequently updated (sensor data)

○ Minimize the number of copies to keep access auditing simpler (sensitive data)

●   You want better performance for your particular workload

○ When triplestores are not the fastest DBs for it

○ Interactive Business Intelligence analytical queries

■ OLAP-cube-like acceleration



Downside of the virtual approach
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● Less "out-of-the-box" decent performance than with triplestores

○ Need to pay more attention when designing the mapping 

○ Frequent need for extra metadata

● "Meta-queries" are more challenging

○ Where properties or classes are variables

○ Permanent effort to bring new optimizations in VKG engines

● Less suitable for graph analytics

● Limited reasoning capabilities



Where extra attention is needed?

12

1. IRI templates: make sure they can be decomposed when taking more 
than one argument

○ In the source, you don't want to join over concatenated values but over indexed 
columns

○ Notion of safe-separator in R2RML (e.g. putting a slash between arguments)

○ Easy

2.  Database constraints

○ Unique constraints, foreign keys, non-nullability, etc.

○ Reduce the number of joins and unions in source queries

○ Eliminate distincts 

■ Recall that a RDF graph doesnʼt contain duplicates (it is a set of triples)



Getting database constraint metadata
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●  Ideal case:  integrity constraints enforced and metadata exposed by 
the source

● In practice: many analytical data sources do not expose this 
metadata!

○ E.g. Dremio, Databricks, DuckDB, BigQuery (until recently)

○ Missing metadata for data coming from files (e.g. CSV, JSON)

● Denormalized data needs general forms of functional and inclusion 
dependencies

Providing missing DB constraint metadata is key for the virtual approach!



Canonical example: self-join 
elimination using unique constraints

14

●  SPARQL is full of joins

○ e.g. 4 triple patterns -> 3 joins

○ After replacing the triple patterns by their definitions (from the mapping), most of 
these joins are redundant

○ If not eliminated, unusual source queries

■ Most of the time not well handled by the source query processors

● You need integrity constraints to eliminate them

○ Canonical case: join the same table over a unique constraint



Canonical example: self-join 
elimination using unique constraints
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Live demo with the Crunchbase dataset on Snowflake

PREFIX schema: <http://schema.org/>

SELECT * WHERE {

 ?company schema:name ?name ; 

             schema:address ?address .

 ?address schema:addressLocality ?locality ;

            schema:addressRegion ?region ;

            schema:addressCountry ?country

} LIMIT 10



Mapping design
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Ontop native mapping language (.obda)
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● Historical mapping language of Ontop

○ In the Ontop-Protégé plugin

○ Regularly used in plain text editors

●  Bi-directional conversion from/to R2RML

●  For SQL data sources

●  Turtle-like template syntax in the target

●  Explicit reuse of IRI templates across 
mapping entries



R2RML
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● W3C standard (interoperability)

● For SQL data sources

● Well-thought for both virtualization and materialization

● Promotes reuse of triples maps rather than of IRI templates

● Often perceived as not user-friendly

○ Hard to teach (compared to Ontop's native format)

○ Most Ontop users prefer our native format



Ontopic Studio
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● Both for virtualization and KG materialization

● No-code (form-based)

○ Avoid typos (e.g. column names, IRIs and IRI templates)

○ Reduce the need to write SQL queries

○ Visualize data

● Efficient search for large mappings

● UX: reuse of IRI templates, no triples maps

● Output: R2RML mapping, OWL/RDFS ontology, lenses



Lenses

20

● Virtual views defined outside of the data sources

● They have a name and can be referenced in the R2RML mapping

● Data "preparation" in Ontopic Studio

○ Functions (dialect-independent or dialect-specific)

● Specify missing database constraints

● Different types

○ Basic, join, SQL, union lenses

○ Flatten lenses for dealing with nested data

● Often saves people from writing SQL queries manually



Nested data
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● Common with files (JSON, Parquet, but actually also CSV)

● Most SQL dialects support flattening

● Several SQL processors handle files directly (e.g. Dremio and DuckDB)

● Optimizations in Ontop (upcoming version)



Next standard after R2RML 1.0?
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● Maybe a future version of RML?

● Both for virtualization and materialization

● Essential

○ Support for nested data

○ Missing database constraints

● Bonus

○ Dialect-independent functions

● Can still be treated as a "low-level" interoperable standard

○ Freedom to choose the UX concepts (lenses for us) 



Some feedback from industry
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● Current status-quo

○ KG market is a niche in the database/data integration world

○ Too many people are not using mappings but scripts

○ Most KG projects are more about metadata than regular data

○ Virtualization is fairly new

● No-code for mapping is getting accepted

○ Multiple vendors

○ Users asking for end-to-end experience

● Interest for standards to avoid vendor lock-in



Suggested research topics

24

Directly interesting for industry

● Data mesh

● Efficient composability of KGs

● Virtual and hybrid KGs



Take-home messages
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● Mappings are not just about KG 
materialization

● KG virtualization is catching up with 
handling nested data

● Database constraint metadata should 
take part of the future mapping standard


